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Abstract 

In this paper I argue that because we always observe nature through some spatial-temporal 
averaging operation we must interpret all observed statistical covariances of velocities 
and gradients as partial time derivatives. Systematic application of this result leads to a 
new interpretation of the radiation wave equation in which c 2 measures the statistical 
variance of velocity. The Galilean invariance of d is then automatic. These results enable 
us to recast the Einstein-Minkowski space-time formalism within the framework of 
classical statistical mechanics. However, the Einstein work-energy relation and the 
constancy of the speed of light appear as equivalent approximations which become exact 
only in the adiabatic limit. 

1. Introduction 

Heat, being defined as a mode of energy transfer that is distinct from 
work, lies outside the scope of Newtonian mechanics because of the 
Newtonian equivalence between work and energy. However, by extending 
the framework of Newtonian mechanics to take account of  the averaging 
operations which are associated with observation, one readily arrives at a 
statistical mechanical theory of heat (Kornacker, 1968). 

It  is generally recognised that heat takes the form of electromagnetic 
radiation in free space. Therefore, it is somewhat surprising that the 
fundamental electromagnetic field equations have not been given a statis- 
tical mechanical interpretation. 

Two deeply rooted traditions in theoretical physics are responsible for 
this omission. Statistical mechanical equations are commonly associated 
with the concepts of ' randomness '  and 'irreversibility', while field equations 
are commonly associated with 'determinism' and 'time-reversal symmetry' .  
I f  these associations are accepted then it is difficult to contemplate any 
unification of the theories of  heat and light. 

In this paper I show that the link between the theories of heat and light 
lies in the statistical theory of partial time derivatives. Partial time deriva- 
tives do not appear in the fundamental equations of  Newtonian physics. 
The partial time derivatives of  position and momentum are simply equiva- 
lent to the respective total time derivatives, and the partial time derivative 
of  energy vanishes. 
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The radiation wave equation 

02~b = c2 ~ '  02~b (1.1) 
Ot 2 ~ OXl 2 

was derived by Maxwell from the phenomenological macroscopic laws of 
electric and magnetic fields and has become the basis for the electromagnetic 
theory of light. By accepting this equation, which attributes fundamental 
significance to partial time derivatives, physicists implicitly abandoned the 
framework of Newtonian concepts, However, it was not the appearance of 
O/Ot that caused concern; it was the appearance of a 'velocity' e whose 
observed value is independent of the relative velocity between the emitter 
and the observer (Galilean invariance). 

It has generally been assumed that the Galilean invariance of e in equation 
(1.1) is an illusion in some sense. Several futile attempts to explain the 
illusion were made by Maxwell, Lorentz, and others. Einstein then axioma- 
tised the illusion as a fundamental law governing spatial and temporal 
observations. Einstein introduced the concept of 'relativistic' velocity and 
derived the most general transformation laws that would preserve New- 
tonian physics in the limit of small velocities and yet make the relativistic 
velocity a Galilean invariant when it equalled the speed of light. 

The alternative formalism which follows is based on a statistical theory 
of partial time derivatives. The results unify the theories of heat and light, 
and clarify the meaning and limitations of the Einstein formalism. 

2. Partial Time Derivatives 

All measurements include a local spatial-temporal averaging (Kornacker, 
1968) operation ( ) .  If this fact is not expressed explicitly, then in theoretical 
physics we will be trying to describe the observed quantity (~b(x)) as a 
mathematical function in the form ~b((x)). When this fails we formally 
introduce an explicit time dependence and require that 

~b(<x), t) = <~b(x)) (2.1) 

Now suppose that the distribution function in < ) does not change in 
time, which is to say that the response characteristics of the measuring 
devices are stable (ideal measuring devices), Then the operators < ) and 
d/dt commute. Therefore we may write 

d(~>dt =<~dt> (2.2) 

Using equation (2.2) and the chain-rule expansion of dq~/dt then yields 

dt \/-.~ Ox, dt / 

= ~--~- /+  ~ az2. ~__, (2.3) 
�9 x: i 
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where the covariance 0-2 is defined by 
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(2.4) 

On the other hand we must have 

d(4)  d~b a~b ~ O~b d(x,)  
dt dt at +/--, ~ )  ~ (2.5) 

Comparing terms in equation (2.5) and (2.3) we identify 

O(x,) = (2.6) 

0~ 0" 2 
3-7 = ~ o_~, a~_~ (2.7) 

Ox~ dt 

Equation (2.7) shows how to convert the chain-rule expression for dqa/dt 
into an expression for O(q~)/Ot. 

Having now developed a general Newtonian model for the 0/0t operator 
we are prepared to consider the form of 02/0t 2. Applying 0/0t to each 
averaged term in 0~/0t gives 

ot ~ - E 4+ox, . . . .  "<.. + ~ E ~'~=+~,o~,. ,x,,,, .x,., - ~ \ at / a-m,'-ar (2.8) 
We now use the identity 

= - (B)0- ] .  <c>0-2.+0-'.,,,,.c 0-A,BC C = (2.9) 

where 

and let 

G,,,, c = ((a - (A>) (B - (B>) ( C -  (C>)> (2.10) 

A=dX2 
dt 

B=dZd 
& 

a 2 
c=__~_~ 

Oxi Oxj 

to obtain the universal Newtonian wave equation 

02~= N, ~ 0 ~  2 
Ot 2 /--, O(xi) O(xj) 0-ex, exs + E ~, ~ ,  ~24, , exs + ~ ~4,. e=x, 

' ~ ' - a T  dt ~x~Oxj d-7" ax--~ dr2 
4 

(2.11) 
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This equation reduces to equation (1.1) if for all i, j 

a3x__~, e2~ , d~A ~- 0 (2.12) 
dt Ox~Ox 3 dt 

~2~ a~  = 0 (2.13) 
3x i dr2 

and for i r  

0 -2 = c 2 (2.14) dx__ L d__x~ 
dt dr 

~2~, ~_/= 0 (2.15) 

A plausible physical interpretation of conditions (2.12) through (2.15) 
could be based on the fact that the center of mass of the earth must be 
performing 'Brownian motion' with respect to our laboratory coordinates. 
Evidently c 2 measures the thermally generated variance of our coordinate 
velocity relative to inertial coordinates. If  comparable high-frequency 
fluctuations are produced by local fields, as for bound electrons, then 
conditions (2.12) and (2.13) may break down. Conditions (2.14) and (2.15) 
will generally fail if either of the previous two conditions fails. The signi- 
ficance of non-zero dcZ/dt will be discussed at the end of this paper. 

The interpretation of c as an ordinary wave velocity is based on a different 
set of  conditions. For arbitrary ~b(x, t) the velocity components dxddt of 
points of constant ~b must satisfy 

o dt at § ~ ~ ~ (2.16) 

Therefore, on any trajectory (line along which ~b is constant) 

0 2 ~ O~ d 2 X~ 0 2 ~ dx i 
Ot 2 ~ O~x~ dt 2 - ~ 3t Ox~ dt 

0@ d 2 xl (2.17) 2Z 
Ox~ Oxj dt dt 

A first step in reducing equation (2.17) to equation (1.1) is the condition 
that for all i 

d 2 xi = 0 (2,18) 
dt z 

Next, it is essential that 

22 
Ox~ Ox~ dt dt 

j (2.19) Ox~ 2 
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in which case equation (2.17) reduces to equation (1.1), with 

( x42 
c 2 = /_ ,  \ ~ - ]  (2.20) 

A sufficient condition to assure equation (2.19) is 

Ox~ Oxj dt dt aXj 2 \ dt ] 

By permutation of i andj  condition (2.21) implies 

a 2 ~b dx, dx, _ a 2 ~ (dx,'~ 2 (2.22) 
Ox~Oxj dt dt O& 2\ dt ] 

Multiplying equations (2.21) and (2.22) together then yields the sufficient 
condition 

( Oa~b ]2 ag~bO2~b (2.23) 
~ 1  - ax? axj 2 

Condition (2.23) is satisfied, for example, by any plane wave. Note that 
conditions (2.18) and (2.20) preclude a time-dependent c. 

3. Decomposition of Velocity Fluctuations 

We have found through equation (2.7) that explicit time dependence may 
be created by covariant fluctuations. The relativistic space-time of Min- 
kowski is one way of describing this kind of time dependence, but before 
we can see this we must reformulate the statistical theory so that it parallels 
the standard theory. 

A necessary first step is to decompose the velocity fluctuation vector 

5 = v - <v> (3.1)  

into the two orthogonal vectors 

5 ,  = ! 5 .  (v>)  (v> (3.2) 
<v> 2 

5 ,  = ! v> x 5 x <v> 
(l)> 2 (3.3)  

52 ~ ~ ii 2 .~_ ~L2 (3.4) 

The vector 5, points parallel to (v> while 5L points perpendicular to (v>. 
We then define a new velocity vector 

u = <v)  + 5,, (3.5) 
Clearly 

(u> = (v> (3.6) 

and the fluctuations of u always point parallel to <u>. 
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The importance of u lies in the equations 

y 2  au,.,,, --- (3 z )  = c 2 (3.7) 
and 

(~z ~2_~2 ~2 (3.8) Ul, U j ]  - -  Ul, U 1 ~ j ,  Uj 

The second equality of equation (3.7) is based on conditions (2.14) and 
(2.15); we are here assuming that the variance of any velocity component 
(e.g. the component of v in the direction of (v)) is equal to c 2 regardless of 
direction. This condition may, of course, break down as mentioned above. 

Equation (3.8) is just another way of saying that u, and u~ are linearly 
related by a non-fluctuating factor, since equation (3.8) says directly that 
the magnitude of the linear correlation coefficient between u, and uj is 1. 
The linear relation comes about because the fluctuations of u change its 
length but not its direction. 

Now define the new spatial coordinates y, by the equations 

(y~) = (xt) (3.9) 

dy~ 
= u, (3.10) 

We may then rewrite equation (2.11) in these new coordinates by substitut- 
ing y~ for x~ throughout. We may furthermore consider the special case 
where this substitution leaves conditions (2.12) and (2.13) valid. Then 
we have 

(3.11) 
at 2 /-., a(x~-fg(xj) """ 

Conditions (2.14) and (2.15) are, of course, replaced by equations (3.7) 
and (3.8). 

The reduction of equation (3.11) to the form of equation (1.1) now 

requires that 

02 ~ 2 a2 ~ (3.12) 2 
which is the analog of equation (2.19). A sufficient condition is 

024 ~ a2~ b 2 (3.13) 
O(x~) O(xj) ~''"~ O(x~) 2 %'"J 

and 
02r 2 as r ~ 

O(xt) ~ (x j )  %'"~ = O(xj)  2 "J'"J 
(3.14) 

where equation (3.14) follows from equation (3.13) by permutation of i 
and j. Multiplying equations (3.13) and (3.14) together, and using equation 
(3.8), we obtain the sufficient condition 
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a<x,Tg{(x~> ] - a<x,>~ a<x;>~ 

which is the direct analog of equation (2.23). 
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(3.15) 

4. S p e c i a l  R e l a t i v i t y  

Based on equations (3.6) and (3.7) we now define 

cr 2 = (u, 2) -- (v,)  2 (4.1) 

c z = cr c, (4.2) 

Here we have adopted the Einstein summation convention of  adding over 
subscripts which are explicitly repeated in a product. We can then define a 
unit &vector by the equations 

(v,> 2 
~r  2 ----- C2 

so that 

642 ~--- - - -  
( llr Ur ) 

C2 

(4.3) 

(4.4) 

We then define 
d•4 
d-t = c~t4 (4.7) 

so that tt sets the direction of the velocity 4-vector defined by 

d~p 
-d~ = e %  (4.8) 

The classical statistical momentum vector is 

a6 
frr = m ( v ~ )  = m ~ - ;  (4.9) 

% )  % )  - (u ,  u~) 
= -1  (4.5) O~p ~p  =~ C2 

We follow the standard convention that Roman subscripts are restricted to 
three space coordinates while Greek subscripts include all four coordinates. 
Introducing an imaginary fourth coordinate through equation (4.4) is 
merely a device enabling us to use the speed of light as a normalizing factor 
for the velocity vector. 

Now we can write the classical statistical velocity vector as 

d6 
d t  - -  e~ ,  = (v~)  (4.6) 
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This may be extended to a 4-vector with 

~4 = rn dt (4.10) 

Using equations (4.4) and (4.7), equation (4.10) becomes 

.E 
~ 4  = 1 - -  (4.11) 

C 

where the 'relativistic energy' E is defined as 

E = ~ m c  2 (4.12) 
I 

Combining equation (4.5) with equations (4.8) through (4.12) then 
yields the fundamental relation 

E 2 = ~vr ~v~ c 2 + (me2) 2 (4.13) 

Apparently, the 'rest energy' me 2 which appears in equation (4.13) is a 
way of correcting for the fact that (u~u,) ,  which occurs when considering 
conservation of translational kinetic energy, differs from <v~> (vr), which 
occurs after considering conservation of momentum. Note, however, that 
by using u instead of v we are ignoring the rotational fluctuations of v. 
These fluctuations seem to carry an additional 'rest energy' of 2me z, and 
are perhaps related in a fundamental way to 'spin'. 

Returning now to the problem of representing explicit time dependence, 
equation (4.7) implies 

0-t = ~4 c~44 (4.14) 

This suggests the definition of a 'relativistic time scale' 

dr  = ~4 dt (4.15) 
1 

so that 

07 ic 0 ~  4 (4.16) 

Using the relativistic time scale, the 'relativistic velocity' is defined as 

d~: r i 
= -~ (vr) (4.17) 

Combining equations (4.1), (4.2), (4.4), and (4.17) then yields the Lorentz 
equation 

(~44) 2 d~rd~r (4.18) 
= 1 e2 dr  2 
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Equations (4.9), (4.17) and (4.18) lead finally to the 'relativistic mass' 
concept through the momentum equation 

m d~:r 
7rr / [ 1  d~d~s~d-c (4.19) 

Changes in the Speed of  Light 

The preceding statistical formalism is valid even if dc/dt is not zero, 
contrary to the usual requirement expressed by equations (2.18) and (2.20). 
In a precise sense the condition that dc/dt be zero is equivalent to the adi- 
abatic limit, since, for a particle, the rate of energy transfer as heat is given 
by (Kornacker, 1968) 

dQ 
dt m ~ ~r 2 (5.1) - -  = v i ,  dv. ~ 

d t  

Therefore, by equations (2.14) and (5.1) 

dQ ~ dcZ (5.2) 
dt = ~ m ~  

The Einstein work-energy relation 

= d~:r ~ '  (5.3) dE 

leaves out heat, and its derivation requires constant c. Equation (5.2) shows 
that these two restrictions are equivalent. Therefore a relativistic theory of 
processes which include heat (e.g. photon emission) cannot include the 
constancy of c as an axiom. This result would appear to be especially 
significant in the fields of high-energy particle physics and cosmology, but 
such applications have not yet been made. 
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